# Econometrics Genres:

## Book Preface

This book is designed to serve as the textbook for a first-year graduate course in econometrics. It has two distinguishing features. First, it covers a full range of techniques with the estimation method called the Generalized Method of Moments (GMM) as the organizing principle. I believe this unified approach is the most efficient way to cover the first-year materials in an accessible yet rigorous manner. Second, most chapters include a section examining in detail original applied articles from such diverse fields in economics as industrial organization, labor, finance, international, and macroeconomics. So the reader will know how to use the techniques covered in the chapter and under what conditions they are applicable.

Over the last several years, the lecture notes on which this book is based have been used at the University of Pennsylvania, Columbia University, Princeton University, the University of Tokyo, Boston College, Harvard University, and Ohio State University. Students seem to like the book a lot. My own experience from teaching out of the book is that students think the book is better than the instructor.

#### Prerequisites

The reader of this book is assumed to have a working knowledge of the basics of calculus, probability theory, and linear algebra. An understanding of the following concepts is taken for granted: functions of several variables, partial derivatives, integrals, random variables, joint distributions, independence, unconditional and conditional expectations, variances and covariances of vector random variables, normal distributions, chi-square distributions, matrix multiplication, inverses of matrices, the rank of a matrix, determinants, and positive definite matrices. Any relevant concepts above this level will be introduced as the discussion progresses. Results on partitioned matrices and Kronecker products are collected in the appendix. Prior exposure to undergraduate econometrics is not required.

#### Organization of the Book

To understand how the book is organized, it is useful to distinguish between a model and an estimation procedure. The basic premise of econometrics is that economic data (such as postwar U.S. GDP) are random variables. A model is a family of probability distributions that could possibly have generated the economic data. An estimation procedure is a data-based protocol for choosing from the model a particular distribution that is likely to have generated the data. Most estimation procedures in econometrics are a specialization of the GMM estimation principle. For example, when GMM is applied to a model called the classical linear regression model, the resulting estimation procedure is Ordinary Least Squares (OLS), the most basic estimation procedure in econometrics. This viewpoint is the organizing principle in the first six chapters of the book, where most of the standard estimation procedures are presented.

The book could have presented GMM in the first chapter, but that would deprive the reader of the option to follow a series of topics specific to OLS without getting distracted by GMM. For this reason I chose to use the first two chapters to present the finite-sample and large-sample theory of OLS. GMM is presented in Chapter 3 as a generalization of OLS.

A major expositional innovation of the book is to treat multiple-equation estimation procedures—such as Seemingly Unrelated Regressions (SUR), Three-Stage Least Squares (3SLS), the Random-Effects method, covered in Chapter 4, and the Fixed-Effects method covered in Chapter 5—as special cases of the single-equation GMM of Chapter 3. This makes it possible to derive the statistical properties of those advanced techniques merely by suitably specializing the results about single-equation GMM developed in Chapter 3. Chapter 6 completes the book’s discussion of GMM by indicating how serial dependence in the error term can be incorporated in GMM.

For some models in econometrics, Maximum Likelihood (ML) is the more natural estimation principle than GMM. ML is covered in Chapters 7 and 8. To make clear the relationship between GMM and ML, the book’s discussion of ML starts out in Chapter 7 with an estimation principle called Extremum Estimators, which includes both ML and GMM as special cases. Applications of ML to various models are covered in Chapter 8.

The book also includes an extensive treatment of time-series analysis. Basic time-series topics are covered in Section 2.2 and in the first half of Chapter 6. That is enough of a prerequisite for the important recent advances in nonstationary time-series analysis, which are covered in the last two chapters of the book.